
Fundamentals of Robotics

Spiral 2: A Robotic Squid

Paul Nadan

December 15, 2017

1

1 Executive Summary

Our team set out to design a robot capable of autonomously navigating between colored buoys on the surface
of the pool. The core design requirements included floating with close to neutral buoyancy, locating and
moving between colored targets, and sending missions wirelessly. Additionally, the robot’s design had to be
inspired by a marine animal and thus propellers could not be used. Our team chose to create a robotic squid
with steerable jets and actuated fins for locomotion. A PixyCam allows the robot to identify colored targets
and an XBee radio communicates with the operator to receive missions and send back data. This robot
was intended to be the second of three iterations with the end goal of creating a bio-mimetic submersible
capable of autonomously retrieving items and navigating to targets, but due to time constraints this will
be the final iteration. While currently unable to submerge itself, the robot’s almost neutral buoyancy still
makes it possible to retrofit for diving in the future.

During the final demonstration, our robot was capable of successfully floating with close to neutral
buoyancy, moving under its own power, sending missions wirelessly, and locating colored targets. The design
also scored points for aesthetics and good engineering. However, due to issues with controlling the valves in
the jet system, the robot was unable to operate one of its two jets. The uneven thrust prevented the robot
from travelling in a straight line, making it impossible to maneuver towards the targets and complete the
mission. As a result of this failure, our robot placed last out of four competing robots, with an overall score
of 19/100 possible points.

2

2 Mechanical System

2.1 Overview

Figure 1: The positioning of the robot’s key components.

Our design is modeled after a squid, with a sleek body, steerable jets, fins, and tentacles (removed during
testing). The entire robot measured 22.3in long by 15.1in wide by 9.4in deep, including fins but excluding
tentacles. Propulsion was provided by the two jets, which were pressurized using a bilge pump. The robot
has three independent steering systems for redundancy: the fins can be angled, the jets can be steered, and a
pair of valves can block the flow from of one jet or the other. A piece of foam near the top of the robot keeps
it oriented upright and helps it float, while an adjustable piece of ballast in the base of the squid allows the
center of mass to be aligned easily. A watertight tube protects the sensitive electronics, with a clear acrylic
piece inset in the endcap for the PixyCam to look through.

3

2.2 Hull

Figure 2: The robot’s 3D printed hull, divided into four sections and a bottom hatch.

The hull was 3D printed and painted a bronze color to match the robot’s steampunk theme. The profile
of the hull was modeled after a squid, which has a very hydrodynamic shape. The hull was divided into four
sections for ease of printing and joined together using threaded inserts. A removable hatch on the bottom
makes swapping batteries easier. Several cross-sectional pieces were added to strengthen the structure, with
holes left for fitting the various other components. Foam ballast at the top and a brass rod at the bottom of
the robot were intended to make the robot float level, with near neutral buoyancy. During testing, additional
ballast was added near the front of the robot to counterbalance the buoyancy of the watertight tube.

4

2.3 Jets

Figure 3: The jet propulsion system. Water is sucked through the intakes by the pump, and
pressurizes a bladder (not shown). When a valve is opened, the water flows through and out of a jet.
A string attaching the jet to a servo allows it to be pulled to point a different direction, and a spring
wrapped around the jet restores it to its normal position.

To propel itself, the robot intakes water through vents near the back of the hull using a bilge pump. The
pump pressurizes a bladder (we used a rubber glove), which can build up water pressure to release when one
of the two valves is opened. The valves are each connected to a steerable jet, which can be pulled to point
outwards or even forwards by pulling a fishing line string using a servo. A spring wrapped around each jet
returns it to pointing straight when the servo releases tension in the string. Turning can be achieved by
opening one valve and closing the other to create a one-sided thrust or by directing one jet forwards and
the other backwards to apply a torque on either side of the robot. In practice, the system for directing the
jet was never tested due to time constraints, although all of the requisite mechanical components were in
place besides the string. Additionally, shortly before the demonstration, one valve closed and could not be
reopened, rendering steering impossible. We have yet to diagnose the issue, but it could be caused by the
valve’s lack of waterproofing, or by wiring issues or code bugs. Even when the valves were both open, the
pump was unable to provide very much pressure, and the squid moved at a fairly low velocity. This resulted
from powering the pump off of seven volts rather than the full twelve volts that it is rated for.

5

2.4 Fins

Figure 4: A fin mounted to a servo. Angling the fin creates hydrodynamic drag on that side of the
robot, enabling it to turn.

As a backup steering system, we included two fins, one on each side of the head. The fins can be angled
using an attached servo motor. As the angle increases, the fin’s cross-sectional area in the direction of
motion increases as well, creating hydrodynamic drag. By only applying this drag on one side a torque is
created, causing the robot to turn. The shape of the fin was chosen to aesthetically mimic that of a squid
and to reduce water resistance when in the straight position. In practice, the robot’s low velocity meant that
drag was fairly insignificant, and the fins alone had insufficient authority to change the robot’s direction.
Additionally, the point where the valves connected to the motor was not very tight and so the fins often
detached despite repeated application of superglue.

6

2.5 Watertight Tube

Figure 5: The watertight electronics tube. The electronics can be slid out for easy access.

To protect sensitive electrical components like the Arduinos, we sealed them inside of a watertight plastic
tube. The endcaps are sealed in place using O-rings, and a cutout from one of the endcaps is covered with
transparent acrylic, enabling the PixyCam to see out of the tube. To route power in and out of the tube,
two conductive pass-throughs are screwed through the endcap, with gasket-maker used to seal any gaps.
For the signal wires, a more difficult solution was needed. Three bolts with holes bored through the center
using a lathe were screwed into the endcap using gasket maker. To fill the gap between the wires running
through each bolt, we used sealant. However, during testing we discovered that the sealant was insufficient
and water still got into the tube. We next tried filling the gaps with tool dip, but it did not seal around
the wires tightly enough and water was still able to seep through. Finally we filled the entire inside surface
of the endcap with large amounts of epoxy, which gave us a nice watertight seal. We also added a pressure
fitting to the endcap that would allow us to pressurize the inside of the tube, so that in the event of a leak
air would leak out rather than water coming in. To enable easier access to the electronics, we mounted them
on a wooden board that could slide in and out of the tube. A metal band prevents the tube from sliding out
of the robot.

7

3 Electrical System

3.1 Power Flow

Figure 6: A diagram of the power flow through the robot. While the PixCam was initially attached
to the Sense Arduino, it was moved to the Think/Act Arduino as shown.

Our robot is powered by a pair of rechargeable, 7.5V lithium batteries wired together in parallel. The
positive terminal is connected to a fuse to prevent damage in the event of a short circuit and a switch to
turn off the robot. From there, a DC/DC converter regulates the voltage so that the Arduinos receives a
consistent voltage input even as the battery voltage drops and avoids spikes in current caused by the mo-
tors. The power from the regulator feeds into two Arduinos, one designated for “Sense” code, i.e. operating
the PixyCam and other sensors, and one designated for “Think” and “Act” code, i.e. making decisions,
receiving missions, and operating actuators. A motor shield on the Think/Act Arduino is powered off of the
unregulated current for running the servos, and an I/O shield on top of the motor shield allows for clean
wiring and easy repositioning of servo ports. The power for the motor shield runs through a relay designed
to act as an E-stop by blocking current when triggered by the Sense Arduino. A magnetic switch hooked

8

up to the Sense Arduino allows operators to disable the robot without opening the tube, even if the wireless
communication stops working.

The Sense Arduino provides power to several sensors, including the magnetic switch as well as a flood
sensor and temperature sensor, designed to detect critical problems during a mission. The PixyCam initially
drew power from the Sense Arduino, but during testing we moved the PixyCam to the Think/Act Arduino
instead. The Think/Act Arduino provides power to four servos (two for the jets and two for the fins), the
bilge pump, and the two valves. One of the valves is actually triggered by a relay, due to a shortage of out-
puts from the motor shield. An XBee attached to the I/O shield on the Think/Act Arduino also draws power.

According to our power calculations, our maximum current draw is around 11A. The batteries can hold
1200mAh each or 2400mAh combined, giving the robot a battery life of 13 minutes under full load. However,
because the servos move fairly infrequently, the actual battery life is significantly longer in practice.

Table 1: Power Usage

Component Voltage Current Quantity

Servo 7.2V 2A (load), 330mA (no load) 4

Pump 7.2V 2A 1

Arduino Uno 5V 47mA 2

DC Motor Shield 5V 36mA 1

PixyCam 5V 140mA 1

Valve 7.2V 400mA 2

9

3.2 Data Flow

Figure 7: A diagram of the data flow through the robot. Note that the two Arduinos are no longer
communicating.

The data diagram centers around the two Arduinos, one for Sense and one for Think and Act code. They
were originally in communication with each other using a protocol called SoftwareSerial, but during testing
we switched the PixyCam to the ThinkAct Arduino to avoid conflicts with the servo library and severed
all communication between the two. Currently, the Sense Arduino is only used to E-Stop the robot and
potentially control LEDs added to the tentacles. The Sense Arduino receives data from the magnetic switch
and the temperature and flood sensors, which it can use to determine whether to trigger the E-stop relay.
The Sense Arduino is also equipped with a 9-axis motion shield, intended for possible use in a future mission.

The Think/Act Arduino receives object detection data from the PixyCam and operator commands
through an XBee. It also sends status information back to the operator through the XBee connection.
Initially, we were using a pair of XBees without antenna, which were unable to communicate while the robot
was in the water. Switching out our XBees solved the problem and greatly extended our communication
range. The Arduino sends PWM signals to the four servos using the motor shield, and also sends an voltage
output to one valve through the motor shield and the other through a relay.

10

3.3 Electrical Implementation

Figure 8: The physical electronics on the robot.

When designing the electrical system, the primary concern was waterproofing. While sealing the water-
tight tube was covered in the mechanical design section above, by necessity the batteries, valves, servos,
and pump were all mounted outside of the tube. The batteries were coated in tool-dip for protection, while
the pump and servos were already waterproof. The valves were not water-proof, and so they were encased
in a sealed enclosure. However, the enclosure was not watertight and it was judged that the valves would
probably work fine in water anyway, so further attempts to waterproof them were abandoned.

To minimize opportunities for leaks, as few wires were routed out of the tube as possible. The external
components all shared common power and ground terminals that passed through the endcap. Additionally,
connectors were used so that the tube could be detached from the rest of the robot without the need to open
it. Wires were carefully labeled so that attaching and reattaching the tube to the robot could be done more
easily.

While the electronics manifested several bugs, for the most part problems were identified and treated
fairly fast. Problems encountered included the Arduino requiring seven volts rather than five from the DC
converter to operate certain components at five volts, issues with one of the relays breaking off a lead and
requiring replacement, and accidentally using Arduino ports that were already in use by either the shields,
the PixCam, or the XBee. By demo day, most of our electrical issues had been worked out, aside from an
issue with controlling the valves that may have had an electrical cause.

11

4 Control Software

4.1 Sense Setup

1 /∗∗
2 ∗ Spr int 2 Code
3 ∗ Sense
4 ∗ SquidBot
5 ∗ Miss ion : Drive s t r a i g h t to buoy , turn in c i r c l e , d r i v e to next buoy , e t c . ,
6 ∗ then back home
7 ∗ Team Squid : Aubrey , Diego , Gretchen , Jon , MJ, Paul
8 ∗ 12/12/2017
9 ∗ Vers ion 3

10 ∗/
11 // l i b r a r y f o r s e r i a l communication
12 //#inc lude <EasyTransfer . h>
13 //#inc lude <S o f t w a r e S e r i a l . h> // need t h i s l i b r a r y to run Software S e r i a l
14

15 // l i b r a r i e s inc luded to use PixyCam
16 #inc lude <SPI . h>
17 #inc lude <Wire . h>
18 //#inc lude <PixyI2C . h>
19 #inc lude <Pixy . h>
20

21 //#inc lude ”PixyUART . h”
22

23

24 // l i b r a r y inc luded to use s e rvo s
25 #inc lude<Servo . h>
26

27 // l i b r a r i e s inc luded to use motor and motion s h i e l d
28 //#inc lude ”NineAxesMotion . h”
29

30 // Constants and Global Var i ab l e s
31 // Pixy pixy ; // c r e a t e s PixyCam ob j e c t to use
32 // EasyTransfer ETin , ETout ; // c r e a t e s s e r i a l s t r u c t u r e s to t r a n s f e r data
33

34 // f l o o d True i f h u l l f l o o d i n g
35 //temp true i f e l e c t r o n i c s overheat ing
36 boolean f lood , temp , estop = f a l s e ;
37

38 // Pins
39 const i n t FLOODPIN = A3 ;
40 const i n t MAX BLOCKS = 7 ;
41 const i n t STOP = A0 ; // Magnetic s enso r pin to determine eStop
42 const i n t TEMP = A2 ;
43 const i n t RELAY = 5 ;
44

45 // s t r u c t SEND DATA STRUCTURE{
46 // // put your v a r i a b l e d e f i n i t i o n s here f o r the data you want to r e c e i v e
47 // //THIS MUST BE EXACTLY THE SAME ON THE OTHER ARDUINO
48 // f l o a t widths [MAX BLOCKS] ;
49 // i n t 1 6 t s i g n a t u r e s [MAX BLOCKS] ;
50 // f l o a t p o s i t i o n s [MAX BLOCKS] ;
51 // boolean estop ;
52 // } ;
53 //
54 //// g ive a name to the group o f data
55 //SEND DATA STRUCTURE txdata ;
56

57

58 //SETUP ROBOT CODE (RUN ONCE)
59 void setup () {
60 S e r i a l . begin (9600) ;
61

62 // pixy . i n i t () ;
63 // Arduino . begin (4800) ;

12

64

65 //ETout . begin (d e t a i l s (txdata) , &S e r i a l) ;
66

67 pinMode (STOP, INPUT) ;
68 pinMode (FLOODPIN, INPUT) ;
69 pinMode (RELAY, OUTPUT) ;
70

71 delay (100) ;
72 }

In the setup function, the Arduino initializes the pinmodes of the sensors. The commented out code
was used to establish SoftwareSerial communication between the two Arduinos, but was abandoned due to
conflicts with the Think/Act Arduino’s Servo library. There is also commented code that initialized the
PixyCam before it was moved to the other Arduino.

4.2 Sense Loop

1 //ROBOT CONTROL LOOP (RUNS UNTIL STOP)
2 void loop () {
3 // ETout . sendData () ;
4 delay (20) ;
5 // checkFlood () ;
6 //checkTemp () ;
7 }
8

9 //CONTROL FUNCTIONS
10

11 // Check the f l o o d senso r f o r problems
12 void checkFlood () {
13 i n t l i q u i d L e v e l = d ig i ta lRead (FLOODPIN) ;
14 i f (l i q u i d L e v e l == HIGH) {
15 f l o o d = true ;
16 }
17 }
18

19 // Check the temperature s enso r f o r problems
20 void checkTemp () {//temp 150F
21 i n t va l=analogRead (TEMP) ; // Connect LM35 on Analog 0
22 f l o a t dat = (double) va l ∗ (5/10 . 24) ;
23 i f (dat >= 65 .5) {
24 temp = true ;
25 }
26 }
27

28 // E−stop the robot us ing the r e l a y
29 void eStop () {
30 estop = d ig i t a lRead (STOP) ;
31 i f (eStop) {
32 d i g i t a l W r i t e (RELAY, HIGH) ;
33 }
34 }

The loop function is called iteratively while the robot is running. Currently, the Sense Arduino actually
does nothing during each loop. As mentioned earlier, the PixyCam was moved to the other Arduino.
Additionally, there was not enough time to test out the temperature and flood sensors, so their values are
currently being ignored. However, helper functions exist for reading their values and triggering the E-stop
relay.

4.3 Think/Act Setup

1 /∗∗
2 ∗ Spr int 2 Code
3 ∗ Think/Act

13

4 ∗ SquidBot
5 ∗ Miss ion : Drive s t r a i g h t to buoy , turn in c i r c l e , d r i v e to next buoy , e t c . ,
6 ∗ then back home
7 ∗ Team Squid : Aubrey , Diego , Gretchen , Jon , MJ, Paul
8 ∗ 12/12/2017
9 ∗ Vers ion 3

10 ∗/
11

12 // Library f o r S e r i a l Trans fe r
13 //#inc lude <EasyTransfer . h>
14 //#inc lude <S o f t w a r e S e r i a l . h>
15 //#inc lude <A l t S o f t S e r i a l . h>
16

17 // L i b r a r i e s inc luded to use PixyCam
18 #inc lude <SPI . h>
19 #inc lude <Pixy . h>
20

21 // Library inc luded to use s e rvo s
22 //#inc lude<Servo . h>
23 #inc lude<ServoTimer2 . h>
24

25 // L i b r a r i e s inc luded to use motor and motion s h i e l d
26 #inc lude <Wire . h>
27

28 Pixy pixy ; // c r e a t e s PixyCam ob j e c t to use
29

30 // CONSTANTS AND GLOBAL VARIABLES
31 // Constants
32 enum {RIGHT=−1, NONE=0, LEFT=1, STRAIGHT=2}; // D i r e c t i o n s
33 enum {GREEN=3, YELLOW=4, RED=5, HOME=6, DANCE=7, LOOP=8}; // Targets
34 const i n t APPROACH DIST = 100 ; // Distance from t a r g e t to s t a r t turn ing (inche s)
35 const f l o a t K P = 1 . 0 ; // Propor t i ona l constant f o r feedback c o n t r o l
36 const i n t FORWARD VELOCITY = 255 ; // Pump output f o r normal swimming
37 const i n t TURNING VELOCITY = 255 ; // Pump output f o r turn ing
38 const i n t MAX MISSION LENGTH = 10 ; // Maximum number o f t a r g e t s in a miss ion
39 const i n t CAMERA RATIO = 1 ; // Distance from buoy d iv ided by p i x e l width o f buoy (inche s /

p i x e l)
40 const i n t SERVO MIN POSITION = 1000 ; // 0 ; // Minimum angle that s e rvo s can output
41 const i n t SERVO MAX POSITION = 2000 ; // 170 ; // Maximum angle that s e rvo s can output
42 const i n t FIN FORWARD ANGLE = 500 ; // 85 ; // Le f t f i n se rvo value f o r going forward (r i g h t i s

r eve r s ed)
43 const i n t FIN TURN ANGLE = 100 ; // 120 ; // Le f t f i n se rvo value f o r turn ing (r i g h t i s

r eve r s ed)
44 const i n t TUBE ZERO ANGLE = 1500 ; // Le f t tube servo d e f a u l t p o s i t i o n f o r going forward (

r i g h t i s r eve r s ed)
45 const i n t TURNING ANGLE = 2000 ; // 170 ; // Angle output f o r i n i t i a t i n g a turn , c u t o f f f o r

apply ing va lve s and f i n s
46 const i n t MAX BLOCKS = 7 ; // Maximum number o f b locks sent from pixycam
47 const bool TURN TUBES = true ; // Whether to use tube s e rvo s f o r s t e e r i n g
48 const bool TURN VALVES = true ; // Whether to use va lve s f o r s t e e r i n g
49 const bool TURN FINS = true ; // Whether to use f i n s f o r s t e e r i n g
50

51 // Pins
52 const i n t FIN1 = 10 ; // Right f i n
53 const i n t FIN2 = 3 ; // Le f t f i n
54 const i n t TUBE1 = 9 ; // Right tube p u l l
55 const i n t TUBE2 = 5 ; // Le f t tube p u l l
56 const i n t VALVE2 = 2 ; // Le f t va lve through r e l a y
57 const i n t PUMPE = 4 ; // Pump PLL speed c o n t r o l pin
58 const i n t PUMPM = 5 ; // Pump motor plug
59 const i n t VALVE1E = 7 ; // Valve PLL speed c o n t r o l pin
60 const i n t VALVE1M = 6 ; // Valve motor plug
61

62 // Objects
63 ServoTimer2 r ightFin , l e f t F i n , le ftTube , r ightTube ;
64 // A l t S o f t S e r i a l Arduino (12 ,13) ; //communicate with sense Arduino RX TX
65 // EasyTransfer ETin , ETout ;
66

14

67 // State v a r i a b l e s
68 i n t d i r e c t i o n = NONE; // Computed d i r e c t i o n to t r a v e l
69 i n t miss ion [MAX MISSION LENGTH] ; // Ordered array o f ta rge t s , e . g . {RED, YELLOW, WHITE, HOME

, NONE}
70 i n t t a r g e t = 0 ; // Current t a r g e t index
71 i n t d i s t ance = 0 ; // Distance from t a r g e t in inche s
72 i n t ang le = 0 ; // Angle towards t a r g e t in degree s CCW
73 long p r e v i o u s M i l l i s = 0 ; // Previous loop time in m i l l i s e c o n d s
74 boolean f lood , temp = f a l s e ; // E−Stop act ivated , h u l l f l ood ing , e l e c t r o n i c s overheat ing
75 i n t l oops = 0 ; // Number o f t imes loop func t i on i s c a l l e d
76

77 f l o a t widths [MAX BLOCKS] ; // Widths o f detec ted b locks
78 i n t 1 6 t s i g n a t u r e s [MAX BLOCKS] ; // Colors o f detec ted b locks
79 f l o a t p o s i t i o n s [MAX BLOCKS] ; // X−p o s i t i o n s o f detec ted b locks
80 boolean estop = f a l s e ; // Whether to d i s a b l e the robot
81

82 //
83 //// S e r i a l send / r e c i e v e s t r u c t u r e s
84 // s t r u c t RECEIVE DATA STRUCTURE{
85 // // put your v a r i a b l e d e f i n i t i o n s here f o r the data you want to r e c e i v e
86 // //THIS MUST BE EXACTLY THE SAME ON THE OTHER ARDUINO
87 // f l o a t widths [MAX BLOCKS] ;
88 // i n t 1 6 t s i g n a t u r e s [MAX BLOCKS] ;
89 // f l o a t p o s i t i o n s [MAX BLOCKS] ;
90 // boolean estop ;
91 // } ;
92 //
93 //
94 //// Give a name to the group o f data
95 //RECEIVE DATA STRUCTURE rxdata ;
96

97 // SETUP ROBOT CODE (RUN ONCE)
98 void setup () {
99 // S e r i a l t r a n s f e r i n i t i a l i z a t i o n

100 S e r i a l . begin (9600) ;
101 pixy . i n i t () ;
102 // Arduino . begin (4800) ;
103 //ETin . begin (d e t a i l s (rxdata) , &Arduino) ;
104

105 // S e r i a l . p r i n t l n (” In setup ”) ;
106

107 // Pin i n i t i a l i z a t i o n
108 r ightTube . attach (TUBE1) ;
109 l e f tTube . attach (TUBE2) ;
110 l e f t F i n . attach (FIN2) ;
111 r i gh tF in . attach (FIN1) ;
112 pinMode (PUMPM, OUTPUT) ;
113 pinMode (VALVE1M, OUTPUT) ; // Right
114 pinMode (VALVE2, OUTPUT) ; // Le f t
115

116 S e r i a l . p r i n t l n (”About to system check ”) ;
117 systemCheck () ;
118 S e r i a l . p r i n t l n (”System check done”) ;
119 }

The code for the Think/Act Arduino begins by declaring several constants for how to interpret missions,
read the PixyCam, and output values to the Servos. A set of enums defines the different robot missions
and behavior states. There is also commented out code for initializing SoftwareSerial and importing a Servo
library that we tried unsuccessfully to get working before finding a better one. A few state variables are also
declared to track the mission, current robot state, and observed objects. In the setup function, we initialize
the Arduino pins and servos, start up the PixyCam, begin Serial communication through the XBee, and
perform a system check to ensure the robot is fully functional.

4.4 Think/Act Loop

15

1 // ROBOT CONTROL LOOP (RUNS UNTIL STOP)
2 void loop () {
3 delay (20) ;
4 l oops++;
5

6 d i g i t a l W r i t e (PUMPM, HIGH) ;
7 analogWrite (PUMPE, 255) ;
8

9 downloadMission () ;
10 readSenseArduino () ;
11 th ink () ;
12 act () ;
13 i f (l oops%10==0) debug () ;
14 }

Each loop iteration, the robot tells the pump to turn on, then proceeds to check for a new mission, look
for data from the Sense Arduino, decide on a course of action, and then output actuator values accordingly.
Finally, the debug function is called to print data over the XBee for the operator once every ten loops.

4.5 Downloading a Mission

1 // Check f o r new miss ion over S e r i a l in the format o f a s t r i n g o f c h a r a c t e r s
2 void downloadMission () {
3 i n t n = S e r i a l . a v a i l a b l e () ;
4 i f (n<1) { // No message a v a i l a b l e
5 r e turn ;
6 }
7 f o r (i n t i =0; i<n ; i++) {
8 // Map input c h a r a c t e r s to d e s i r e d t a r g e t s
9 switch (S e r i a l . read ()) {

10 case ’> ’ : r e turn ; // Debug message
11 case ’ 2 ’ : miss ion [i] = STRAIGHT; break ;
12 case ’ 1 ’ : miss ion [i] = LEFT; break ;
13 case ’ 3 ’ : miss ion [i] = RIGHT; break ;
14 case ’ r ’ : mis s ion [i] = RED; break ;
15 case ’ y ’ : mis s ion [i] = YELLOW; break ;
16 case ’ g ’ : miss ion [i] = GREEN; break ;
17 case ’h ’ : miss ion [i] = HOME; break ;
18 case ’d ’ : miss ion [i] = DANCE; break ;
19 case ’ l ’ : mis s ion [i] = LOOP; break ;
20 d e f a u l t : miss ion [i] = NONE;
21 }
22 }
23 f o r (i n t i=n ; i<MAX MISSION LENGTH; i++){
24 miss ion [i] = NONE;
25 }
26 t a r g e t = 0 ;
27 }

This function checks if Serial has any new data, and if so parses it into a set of actions to take in order,
overwriting its current mission.

4.6 Reading Sense Arduino

1 // Compute d i s t ance and d i r e c t i o n from sense Arduino input
2 void readSenseArduino () {
3 i n t n = pixy . getBlocks () ;
4 f o r (i n t i =0; i<MAX BLOCKS; i++) {
5 s i g n a t u r e s [i] = 0 ;
6 }
7 f o r (i n t i =0; i<min (n ,MAX BLOCKS) ; i++) {
8 widths [i] = pixy . b locks [i] . width ;
9 p o s i t i o n s [i] = pixy . b locks [i] . x ;

10 s i g n a t u r e s [i] = pixy . b locks [i] . s i g n a t u r e ;

16

11 }
12 d i s t ance = −1;
13 ang le = 0 ;
14 f o r (i n t i =0; i<MAX BLOCKS; i++) {
15 i f (s i g n a t u r e s [i]==miss ion [t a r g e t]−2) { // G,Y,R,H = 1 ,2 ,3 ,4
16 d i s t ance = CAMERA RATIO∗widths [i] ;
17 ang le = p o s i t i o n s [i]−159; // 159 = cente r o f s c r e en
18 }
19 }
20

21 // i f (ETin . rece iveData ()) { // r e c i e v e s data : n , b locks
22 // de lay (20) ;
23 // d i s t anc e = −1;
24 // ang le = 0 ;
25 // i f (rxdata . es top) {
26 // eStop () ;
27 // }
28 //
29 //}
30 }

This function was initially intended to obtain PixyCam data from the Sense Arduino over SoftwareSerial, but
now instead reads the PixyCam values directly. Based on the size of the detected object and its x-position
in the camera field, it computes the current direction and distance to the target.

4.7 Think

1 // THINK
2 void th ink () {
3 i f (miss ion [t a r g e t]<=2) { // Manual o v e r r i d e
4 d i r e c t i o n = miss ion [t a r g e t] ;
5 } e l s e i f (miss ion [t a r g e t]==DANCE) { // Dance code
6 d i r e c t i o n = DANCE;
7 } e l s e i f (d i s tance <0) { // Target not v i s i b l e
8 d i r e c t i o n = LEFT;
9 } e l s e i f (d i s tance>APPROACH DIST) { // Reached t a r g e t

10 t a r g e t++;
11 i f (mis s ion [t a r g e t]==LOOP) { // Restart miss ion
12 t a r g e t =0;
13 }
14 d i r e c t i o n = NONE;
15 } e l s e { // Target v i s i b l e
16 d i r e c t i o n = STRAIGHT;
17 }
18 }

The robot’s behavior varies based on its current mission. For manual control commands (turn left, turn
right, go straight, stop) the desired direction is set directly to the command. However, when seeking a target
the robot moves straight if it sees that target, and turns otherwise. When it gets close enough to the target,
it proceeds to advance to the next target in its mission. If the mission is set to loop, the code resets back to
the first target upon completing the mission.

4.8 Act

1 void act () {
2 i f (e s top) {
3 move (0 , 0) ;
4 r e turn ;
5 }
6 switch (d i r e c t i o n) {
7 case STRAIGHT: // Swim s t r a i g h t us ing p r o p o r t i on a l feedback c o n t r o l
8 move(FORWARD VELOCITY, i n t (K P∗ ang le)) ;
9 break ;

17

10 case LEFT: // Turn l e f t
11 move(TURNING VELOCITY, TURNING ANGLE) ;
12 break ;
13 case RIGHT: // Turn r i g h t
14 move(TURNING VELOCITY, −TURNING ANGLE) ;
15 break ;
16 case DANCE: // Show o f f your moves
17 break ;
18 d e f a u l t : // Stop
19 move (0 , 0) ;
20 break ;
21 }
22 }

Based on the direction computed by the think function, the code calls the move function with the appropriate
parameters. A simple proportional feedback loop is used to steer straight by turning in proportion to the
angle to the current target.

4.9 Helper Functions

1 // Delay loop
2 void wait (i n t t) {
3 p r e v i o u s M i l l i s = m i l l i s () ;
4 whi le (m i l l i s () − p r e v i o u s M i l l i s <= t) {}
5 }
6

7 //Check a l l systems
8 void systemCheck () {
9 wait (1000) ;

10 move (0 , TURNING ANGLE) ;
11 wait (1000) ;
12 move (0 , −TURNING ANGLE) ;
13 wait (1000) ;
14 move (0 , 0) ;
15 }
16

17 // eStop func t i on to shut o f f a l l motors
18 void eStop () {
19 // r i gh tF in . wr i t e (0) ;
20 // l e f t F i n . wr i t e (0) ;
21 // le f tTube . wr i t e (0) ;
22 // rightTube . wr i t e (0) ;
23 d i g i t a l W r i t e (VALVE2, LOW) ;
24 d i g i t a l W r i t e (PUMPM, LOW) ;
25 analogWrite (PUMPE, 0) ;
26 d i g i t a l W r i t e (VALVE1M, LOW) ;
27 analogWrite (VALVE1E, 0) ;
28 }
29

30 // Output cur rent s t a t e over Xbee
31 void debug () {
32 S e r i a l . p r i n t (”>>> Miss ion : ”) ;
33 f o r (i n t i =0; i<MAX MISSION LENGTH; i++) {
34 S e r i a l . p r i n t (miss ion [i]) ;
35 }
36 S e r i a l . p r i n t (” , Blocks : ”) ;
37 S e r i a l . p r i n t (s i g n a t u r e s [0]) ;
38 S e r i a l . p r i n t (s i g n a t u r e s [1]) ;
39 S e r i a l . p r i n t (s i g n a t u r e s [2]) ;
40 S e r i a l . p r i n t (s i g n a t u r e s [3]) ;
41 S e r i a l . p r i n t (s i g n a t u r e s [4]) ;
42 S e r i a l . p r i n t (s i g n a t u r e s [5]) ;
43 S e r i a l . p r i n t (s i g n a t u r e s [6]) ;
44 S e r i a l . p r i n t (” , Target : ”) ;
45 S e r i a l . p r i n t (t a r g e t) ;
46 S e r i a l . p r i n t (” , D i r e c t i on : ”) ;

18

47 S e r i a l . p r i n t (d i r e c t i o n) ;
48 S e r i a l . p r i n t (” , Distance : ”) ;
49 S e r i a l . p r i n t (d i s t ance) ;
50 S e r i a l . p r i n t (” , Angle : ”) ;
51 S e r i a l . p r i n t (ang le) ;
52 S e r i a l . p r i n t (” , Flood : ”) ;
53 S e r i a l . p r i n t (f l o o d) ;
54 S e r i a l . p r i n t (” , Temp: ”) ;
55 S e r i a l . p r i n t (temp) ;
56 S e r i a l . p r i n t (” , E−Stop : ”) ;
57 S e r i a l . p r i n t l n (estop) ;
58 }
59

60 // Output motor va lue s
61 void move(i n t vel , i n t ang) {
62 // Set pump output
63 // i f (ve l >0) {
64 // d i g i t a l W r i t e (PUMPM, HIGH) ;
65 // analogWrite (PUMPE, ve l) ;
66 // } e l s e {
67 // d i g i t a l W r i t e (PUMPM, LOW) ;
68 // analogWrite (PUMPE, 0) ;
69 // }
70

71 d i g i t a l W r i t e (PUMPM, HIGH) ;
72 analogWrite (PUMPE, 255) ;
73 // Set tube ang l e s
74 i f (TURN TUBES) {
75 i n t le f tTubeAngle = min (max(TUBE ZERO ANGLE+ang , TUBE ZERO ANGLE) , TUBE ZERO ANGLE+

TURNING ANGLE) ;
76 i n t rightTubeAngle = min (max(TUBE ZERO ANGLE−ang , TUBE ZERO ANGLE) , TUBE ZERO ANGLE+

TURNING ANGLE) ;
77 l e f tTube . wr i t e (SERVO MIN POSITION + leftTubeAngle) ;
78 r ightTube . wr i t e (SERVO MAX POSITION−rightTubeAngle) ;
79 } e l s e {
80 l e f tTube . wr i t e (SERVO MIN POSITION + TUBE ZERO ANGLE) ;
81 r ightTube . wr i t e (SERVO MAX POSITION−TUBE ZERO ANGLE) ;
82 }
83 // Set f i n ang l e s
84 i f (TURN FINS && ang>=TURNING ANGLE) { // Le f t
85 l e f t F i n . wr i t e (SERVO MIN POSITION + FIN TURN ANGLE−200) ;
86 r i gh tF in . wr i t e (SERVO MAX POSITION − FIN FORWARD ANGLE−100) ;
87 } e l s e i f (TURN FINS && ang<=−TURNING ANGLE) { // Right
88 l e f t F i n . wr i t e (SERVO MIN POSITION + FIN FORWARD ANGLE−200) ;
89 r i gh tF in . wr i t e (SERVO MAX POSITION − FIN TURN ANGLE−100) ;
90 } e l s e { // S t ra i gh t
91 l e f t F i n . wr i t e (SERVO MIN POSITION + FIN FORWARD ANGLE−200) ;
92 r i gh tF in . wr i t e (SERVO MAX POSITION − FIN FORWARD ANGLE−100) ;
93 }
94 // Set va lve s t a t e s
95 i f (TURN VALVES && ang>=TURNING ANGLE) { // Le f t
96 d i g i t a l W r i t e (VALVE1M, LOW) ;
97 analogWrite (VALVE1E, 0) ;
98 d i g i t a l W r i t e (VALVE2, HIGH) ;
99 } e l s e i f (TURN VALVES && ang<=−TURNING ANGLE) { // Right

100 d i g i t a l W r i t e (VALVE1M, HIGH) ;
101 analogWrite (VALVE1E, 255) ;
102 d i g i t a l W r i t e (VALVE2, LOW) ;
103 } e l s e { // S t ra i gh t
104 d i g i t a l W r i t e (VALVE1M, HIGH) ; analogWrite (VALVE1E, 255) ;
105 d i g i t a l W r i t e (VALVE2, HIGH) ;
106 }
107 }

To organize the code, several subtasks were split off into helper functions. These include a function that
delays for a number of milliseconds, a function that runs a system check by trying to turn one way and then
the other, a function to E-stop the robot, a function to print debugging information over the XBee, and a

19

function to output values for the jets, fins, valves, and pump based on the given velocity and turning angle.
The pump control code was commented out and replaced so that the pump would always run for testing
purposes.

4.10 Testing

Most of our code was initially tested on the electronics before they were put into the robot, and then again
after assembly was complete. We trained the PixyCam on vision targets without the rest of the electronics
setup using the bright LED targets with dim lighting for maximum reliability. However, we encountered
significant issues with conflicts between the many different devices that were all trying to communicate using
Serial, namely the two Arduinos, the PixyCam, and the XBee. As a result, we ended up removing large
portions of the code the night before the demonstration, as is made evident the amount of commented out
code. While we were eventually able to resolve these issues, we were set back a significant amount of time,
and unable to work out other issues like the valves in time for the demonstration.

20

5 Conclusion

Figure 9: An image of our finished robot with tentacles attached. It is shown strangling a robot
from the previous spiral.

Overall, the robot met most of the design requirements, with the exception of being able to steer properly.
Due to problems actuating the valves, we were unable to steer, or even to move straight, because one of the
jets was always closed. While this obviously rendered it impossible to complete the mission, with a little
more time for debugging the robot has the potential to complete the mission without any significant changes
to its design. Our robot did score some points for floating properly and good engineering, and was awarded
extra points for aesthetics. We tried a couple of different approaches to solve the valve problem, including
testing the electronics and code without the valves attached using a multimeter and powering the valves
directly from batteries. The valves were getting the correct voltage, and the batteries were unable to open
the valves, which points towards the problem being with the valves themselves.

The valve issue, while most likely not too hard to remedy on its own, was a symptom of insufficient
time being left for testing with the finished robot. Our team finished the mechanical design fairly early in
the process, but 3D printing the robot took much longer than anticipated and set us behind schedule. We
also encountered significant issues interfacing with multiple Arduinos, an XBee, a PixyCam, and several
different Arduino shields. While we successfully got each component working individually, we had major
problems when integrating them all together, which ultimately led us to disconnect the Arduinos from each
other shortly before the demo. We also experienced many difficulties sealing the electronics tube, which
prevented us from testing our electronics until days before the demonstration. While all of these problems

21

were ultimately resolved, we did not leave sufficient time to iron out last minute issues with the electrical
and software integration.

There are a number of ways we could have better implemented our robot. While we added three steering
systems in the hope that at least one would work, in actuality each one just added to the amount of time we
had to spend on debugging, and ultimately none of them functioned well enough to complete the mission.
Additionally, we waited until the robot was fully fabricated to begin testing the servos and valves, rather than
working out any issues in parallel with the mechanical fabrication. Finally, we invested a significant effort
into aesthetics rather than using the time for testing. Admittedly, there was a surplus of mechanical skills
on our team compared to electrical and software, and it is also hard for multiple people to test the control
system at a time, so there may not have been a better use for the time spent on painting and decoration.

Despite the failure of our robot on demo day, I think our whole team found the project to be a valuable
learning experience. Personally, I improved at mechanical design and creating CAD as part of a team,
which requires careful planning and organization to make everything integrate easily. Additionally, I learned
more about communication between embedded controllers and debugging complex systems with integrated
mechanical, electrical, and software components. Finally, I learned the importance of planning ahead, sticking
with a schedule, and dividing up work effectively when working on a long-term, complex team project.

22

	Executive Summary
	Mechanical System
	Overview
	Hull
	Jets
	Fins
	Watertight Tube

	Electrical System
	Power Flow
	Data Flow
	Electrical Implementation

	Control Software
	Sense Setup
	Sense Loop
	Think/Act Setup
	Think/Act Loop
	Downloading a Mission
	Reading Sense Arduino
	Think
	Act
	Helper Functions
	Testing

	Conclusion

