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Target Identification

• We have created a drone swarm to aid a human

operator through guided autonomy

• The swarm is capable of autonomous flight, perceiving

and avoiding threats, identifying and station keeping

over vision targets, and responding to voice and

gesture commands

• The system has performed well in both simulation and

physical testing
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Threat Avoidance

Human-Machine Interface

Target Action Parameters Desired Behavior

Swarm,
Alexa,
Google,
Siri,
Clippy

North/East/South/West [number] m/cm/in/ft Move in a cardinal direction

Forward Move in the direction drone faces

Follow Move in the direction of a gesture

Jump/Duck Increase or decrease altitude

Look North/East/South/West Turn to face a cardinal direction

Turn Left/Right [number] Rotate by a given angle (yaw)

Takeoff/Land N/A Takeoff or land

Stop N/A Hover in place

Picture N/A Take an image of a QR code

Pointing Gesture Geometry

Voice Command Interface

Overall System Architecture

Bin detection result

• Bins are initially detected by a Harr Cascade classifier, after which a

Distractor-aware Siamese Network is used for continued tracking

• Training data for the classifier was generated by applying several

automated labeling tools to the original video footage, including GrabCut,

adaptive thresholding, color segmentation, and edge detection

• QR quadrants are then located by color thresholding the camera image

and searching for white rectangular contours

• The region inside the contour is rotated, cropped, and thresholded to

produce a clean QR quadrant

• After all 4 QR quadrants have been located, they are stitched together in

each possible permutation and checked for a valid code

Drone detection result

• Human and drone detection are both carried out by a

single deep neural-network based object detector

implemented with the TensorFlow object detection API

• The final network architecture employs a variant of the

Single-Shot Multibox Detector

• Only drones with high confidence values are initially

selected, followed by a second inference performed on

cropped regions of the image from lower-confidence

detections of the previous step

• A trio of front-facing rangefinders provide general obstacle detection

• The rangefinders are spaced 45 degrees apart, ensuring over 135 degrees of

coverage with some overlap

• Objects detected by the rangefinders are transformed into a list of obstacle

locations in global coordinates shared among the entire swarm

• A potential-field gradient approach is used to simultaneously navigate each

drone away from obstacles and towards its desired position

• A pointing gesture directs a drone to move a set distance in the given

direction when accompanied by the proper voice command

• The human operator’s arm is found via color detection, aided by

distinctive colored patches worn on the human’s wrist and shoulder

• The locations of the colored patches are transformed into points in 3D

space, then the vector between them is projected onto a 2D plane

• Voice recognition is carried out by

the CMUSphinx engine, implemented

via the SpeechRecognition library

• The command syntax is specified by

a Java Speech Grammar Format

• A wireless microphone is worn by

the human operator to detect voice

commands

Project Objective

Create an integrated, intelligent robotic system that can…

• Avoid static and mobile obstacles

• Navigate indoors without the aid of GPS

• Simultaneously support four cooperative air vehicles

led by a human via voice or gesture

• Locate known objects in unknown geography

• Identify and decipher a quartered QR code

System Overview

“Alexa”
“Google” “Siri”

“Clippy”

• All processes are run on a

single computer

• The main execution thread

processes operator voice

commands, and dictates the

chosen behaviors

• Each vehicle has an assigned

thread, which is responsible for

locally autonomous behaviors

Platform
• Four Parrot Bebop 

2 quadrotor drones

• Downward camera 

for optical flow & 

odometry

• Forward gimballed 

camera for object 

identification & 

tracking

• Custom E-STOP & 

obstacle avoidance 

package

• Sensor data 

streams via WiFi

Flight Control
We primarily use the existing onboard

odometry, but cross compare across all

platforms to improve accuracy

Odometry

Arbiter The arbiter makes low-level behaviors

available as discrete Rostopic commands,

facilitating usage by higher-level behaviors

Soft E-STOP Power to motors is stopped in software via

the Wifi channel

Hard E-STOP The main ground line of the battery is

interrupted by 3 parallel power NMOS,

which can be triggered via a radio signal to

physically cut power

Rangefinder Mount Design

Parrot Bebop 2 Drone

Sensory output configuration

Risk Reduction

EMI/RFI Solutions
• Bebop 2 drones are internally protected from EMI

• We ran additional communications on WiFi to prevent 

interference

• We used a frequency hopping RC controller and receiver 

to eliminate any ESTOP interference between vehicles

Shock/Vibration Solutions
• Bebop 2 rotor chassis is isolated from the sensor suite by 

vibration dampening rubber

• We designed flexible, finger-safe propeller guards, which 

prevent damage to the vehicle upon a crash

• We set a maximum speed on all drones, to prevent 

hazardous flight or high-speed impacts

Simulation and Physical Testing
• We developed multiple simulations with differing levels of 

complexity to test our software without costly and 

dangerous crashes

• We verified that prop guards do not shatter on collisions, 

and live tested the majority of our command and 

perception code


